Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
5778701 | Advances in Mathematics | 2017 | 43 Pages |
Abstract
Let (M,Ï) be a Kähler manifold and let K be a compact group that acts on M in a Hamiltonian fashion. We study the action of KC on probability measures on M. First of all we identify an abstract setting for the momentum mapping and give numerical criteria for stability, semi-stability and polystability. Next we apply this setting to the action of KC on measures. We get various stability criteria for measures on Kähler manifolds. The same circle of ideas gives a very general surjectivity result for a map originally studied by Hersch and Bourguignon-Li-Yau.
Keywords
Related Topics
Physical Sciences and Engineering
Mathematics
Mathematics (General)
Authors
Leonardo Biliotti, Alessandro Ghigi,