Article ID Journal Published Year Pages File Type
5778896 Indagationes Mathematicae 2017 12 Pages PDF
Abstract
We study the degree of compactness of composition operators Cφ acting on weighted Hilbert spaces of entire functions, which include (i) the space of entire Dirichlet series, (ii) the space of entire power series, and (iii) the Fock space (we must have φ(z)=az+b, and it is known that Cφ is compact if and only if |a|<1). More precisely, the sequence (an) of approximation numbers of Cφ is investigated: for (i), we give the exact formula for (an), while for (ii) and (iii) we give upper and lower estimates for an, showing that an behaves like |a|n up to a subexponential factor. In particular, Cφ belongs to all Schatten classes Sp,p>0 as soon as it is compact.
Related Topics
Physical Sciences and Engineering Mathematics Mathematics (General)
Authors
, , , ,