Article ID Journal Published Year Pages File Type
5779078 Aeolian Research 2017 13 Pages PDF
Abstract
The aerodynamic drag properties and sand trapping effectiveness of porous roughness elements constructed of wire mesh with two geometries, cube/rectangular cylinder and round cylinder were evaluated in a wind tunnel study. Porosity of the mesh was 0.525. Volumetric porosity and permeability were systematically changed by nesting similar shaped but smaller sized forms within the largest forms for both shapes. Drag curves for both forms show dependence on Reynolds number to 70,000, due to the creation of complex transitional flow conditions in different zones within the forms. Length of sand deposits in the lee of the elements scale with permeability of the form and the trapping efficiency for particles within the forms scales with the cumulative area of the surfaces perpendicular to the directions of air flow. The cube/rectangular cylinder form was more effective at trapping sand than the round cylinder forms for the same saltation flux. The demonstrated effect of porosity and cumulative mesh area on aerodynamic drag and sand trapping effectiveness argues convincingly that porous elements have a greater potential than solid elements for modulating the sand flux to a higher degree than solid elements when used in large spatial arrays to control wind erosion.
Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Atmospheric Science
Authors
, , , ,