Article ID Journal Published Year Pages File Type
5779685 Earth and Planetary Science Letters 2017 9 Pages PDF
Abstract
An improved method for the chemical purification of Rb for high-precision isotope ratio measurements by multi-collector inductively-coupled-plasma mass-spectrometry. This method has been used to measure the Rb isotopic composition for a suite of planetary materials, including carbonaceous, ordinary, and enstatite chondrites, as well as achondrites (eucrite, angrite), terrestrial igneous rocks (basalt, andesite, granite), and Apollo lunar samples (mare basalts, alkali suite). Volatile depleted bodies (e.g. HED parent body, thermally metamorphosed meteorites) are enriched in the heavy isotope of Rb by up to several per mil compared to chondrites, suggesting volatile loss by evaporation at the surface of planetesimals. In addition, the Moon is isotopically distinct from the Moon in Rb. The variations in Rb isotope compositions in the volatile-poor samples are attributed to volatile loss from planetesimals during accretion. This suggests that either the Rb (and other volatile elements) were lost during or following the giant impact or by evaporation earlier during the accretion history of Theia.
Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Earth and Planetary Sciences (General)
Authors
, ,