Article ID Journal Published Year Pages File Type
5780009 Earth and Planetary Science Letters 2017 11 Pages PDF
Abstract
At modestly reduced conditions (ΔIW−0.4 to −2.2), N is more compatible in core-forming metal than in molten silicate (1≤DNmetal/silicate≤24), while at more reduced conditions (ΔIW−2.2 to ΔIW−3.5), N becomes more compatible in the magma ocean than in the metal phase. In contrast, C is highly siderophile at all conditions investigated (100≤DCmetal/silicate≤700). Therefore, sequestration of volatiles in the core affects C more than N, and lowers the C:N ratio of the BSE. Consequently, the N depletion and the high C:N ratio of the BSE cannot be explained by core formation. Mass balance modeling suggests that core formation combined with atmosphere blow-off also cannot produce a non-metallic Earth with a C:N ratio similar to the BSE, but that the accretion of a C-rich late veneer can account for the observed high BSE C:N ratio.
Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Earth and Planetary Sciences (General)
Authors
, , , , ,