Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
5780103 | Earth and Planetary Science Letters | 2017 | 13 Pages |
Abstract
The Cordillera of the Andes is a double-vergent orogenic belt built up by thickening of South American plate crust. Several models provide plausible explanations for the evolution of the Andes, but the reason why shortening started at â¼50 Ma is still unclear. We explore the evolution of the subduction zone through time by restoring the position of the Nazca trench in an absolute reference frame, comparing its position with seismic tomography models and balancing the evolution of the subducting slab. Reconstructions show that the slab enters into the lower mantle at â¼50±10Ma, and then progressed, moving horizontally at shallow lower mantle depth while thickening and folding in the transition zone. We test this evolutionary scenario by numerical models, which illustrate that compression in the upper plate intensifies once the slab is anchored in the lower mantle. We conclude that onset of significant shortening and crustal thickening in the Andes and its sustained action over tens of million years is related to the penetration of the slab into the lower mantle, producing a slowdown of lateral slab migration, and dragging the upper plate against the subduction zone by large-scale return flow.
Related Topics
Physical Sciences and Engineering
Earth and Planetary Sciences
Earth and Planetary Sciences (General)
Authors
Claudio Faccenna, Onno Oncken, Adam F. Holt, Thorsten W. Becker,