Article ID Journal Published Year Pages File Type
5780968 Geomorphology 2017 9 Pages PDF
Abstract

•We studied a large rock avalanche in the Pampeanas Ranges (Argentina).•We explored the role of tectonics and slope deformation processes on the rock avalanche occurrence.•Tectonic deformation provided the framework for slope deformation processes.•As consequence of tectonic driven uplift, slope deformation increased importance, ultimately bringing the slope to failure.

Both tectonic and long-term gravitational slope deformation in several mountain settings have been shown to be key drivers of large-scale slope instability. The roles of both mechanisms are investigated in this study of the Potrero de Leyes rock avalanche, one of the largest and better preserved slope failures in the Pampeanas ranges in Argentina. This rock avalanche involved 0.25 km3 of highly fractured granitic rocks cropping out on an uplifted planation surface. The rock avalanche left a lobate deposit up to ~ 4 km run out into the piedmont. A field survey, 3D terrestrial LIDAR, photogrammetry, and gigapixel panoramic photos allowed us to map the structures on the headscarp and on the planation surface. We observed a dense network of fractures with joints sets striking NNE-SSW, ENE-WSW, and NW-SE, respectively representing foliation, Riedel, and anti-Riedel structures that developed during the Paleozoic, as suggested by previous studies. The decrease of rock mass strength caused by tectonic fracturing, the exposure of those highly fractured rocks along a tectonically active mountain front, and potential deep-seated gravitational deformation occurring along NNE-SSW foliation planes along the mountain front suggest that tectonic and gravitational processes were key causal factors leading to the occurrence of the Potrero de Leyes rock avalanche.

Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Earth-Surface Processes
Authors
, , , , , ,