Article ID Journal Published Year Pages File Type
5781542 Tectonophysics 2017 43 Pages PDF
Abstract
NW-SE trending aeromagnetic signatures related to Sonakhan Greenstone Belt extends below the Singhora sedimentary rocks and forms the basement in the west. The analysis suggests that TCAL is a block fault with northern block down-thrown and affected the basement rocks comprising the Sonakhan Greenstone Belt and Samblapur Granitoids. The episode of faulting represented by the TCAL is pre-Singhora sedimentation and played a vital role in basin evolution. The basement configuration image generated by estimates of depth to magnetic basement suggests a complex pattern of NNE-SSW to NE-SW trending depressions separated by a linear N-S trending basement ridge. It is inferred from the 3D magnetic susceptibility inversion that the thickness of sediments is more towards the eastern basin margin and the N-S ridge is a manifestation of post sedimentary faulting. Results of 2.5D modelling of a WNW-ESE profile across the Singhora Basin combined with results from 3D inversion suggest suggests the basin subsidence was controlled by NE-SW trending regional faults in an active system. The basin geometry evolved by E-W block faulting overprinted by NE-SW trending pre- to syn-depositional normal faults generating NE-SW depression, which are affected by N-S trend post-sedimentary faulting. Though the present work relates the basin evolution with the initiation of rift basin, it warrants further work to establish the deformation within the basin pertaining to the proximal thrust and uplift along the craton fringe.
Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Earth-Surface Processes
Authors
, , , , , ,