Article ID Journal Published Year Pages File Type
5781880 Tectonophysics 2016 6 Pages PDF
Abstract

•Geodetic investigation of the deformation associated with the 2011 eruption of the Nabro volcano, Eritrea, is presented.•Our model includes a dike, a normal fault and a strike-slip fault, consistent with the mechanisms of the major earthquakes.•Coulomb stress calculations based on our model are found to be in agreement with post-eruptive seismicity.•The source mechanism and geometry of our model are found to be in accord with the major tectonic structures in this area.

We investigate the crustal deformation associated with the 2011 eruption of the Nabro volcano, Afar, Eritrea. The Nabro volcano erupted on the night of 12 June 2011. A seismic sequence started 5 h before the onset of the volcanic eruption. It included 25 M > 3 earthquakes, of which one Mw 5.6 normal fault earthquake occurred on 12 June at about the same time as the onset of the eruption, and one Mw 5.6 strike-slip earthquake occurred at the end of the main sequence on 17 June. The deformation associated with the eruption and the seismic activity was resolved by Interferometric Synthetic Aperture Radar (InSAR) measurements of the TerraSAR-X and ENVISAT satellites. Interferograms were generated using ascending and descending track pairs. The Nabro caldera and the associated channel of magma flow are characterized by significant loss of coherence which limited our InSAR observations at the near field of the volcano. Therefore, detailed assessment of co- and post-eruptive seismicity and monitoring of post-eruptive deformation using continued InSAR observations were added to the co-eruptive analysis in order to better constrain the different magmatic and tectonic components and determine the final source model. We carried out tens of different inversion models. Our best-fit model includes a dike, a normal fault and a strike-slip fault, consistent with the mechanisms of the major earthquakes. Coulomb stress calculations based on our model are found to be in agreement with post-eruptive seismicity. Finally, the source mechanism and geometry of our model are found to be in accord with the major tectonic structures in this area.

Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Earth-Surface Processes
Authors
, ,