Article ID Journal Published Year Pages File Type
5783367 Geochimica et Cosmochimica Acta 2017 21 Pages PDF
Abstract
Our triple oxygen isotope data are reported as Δ17O values relative to a CO2-water equilibration line with Δ17O = ln (δ17O + 1) − 0.5229 × ln (δ18O + 1). We report an average of -0.02 ± 0.05‰ (SD) in the first year and -0.12 ± 0.04‰ (SD) in the second year of our measurements. This year-to-year difference is higher than expected based on other available Δ17O records, but careful scrutiny of our measurement approach did not reveal obvious analytical biases, leaving this aspect of our record unexplained. After removing the year-to-year trend, our time series shows a statistically robust seasonal cycle with maximum values in June/July and an amplitude (peak-to-trough) of 0.13 ± 0.02‰. We compare our observational data to a revised triple oxygen isotope mass balance “box” model of tropospheric CO2 where we reconcile both 18O/16O and 17O/16O fractionation processes. We also compare them to Göttingen-specific output from a three-dimensional transport model simulation of Δ17O in CO2 performed with the Tracer Model 5 (TM5). Both the modeled isofluxes at the surface, and the modeled stratospheric, fossil, and biospheric Δ17O components in the atmosphere at Göttingen confirm that the observed seasonal cycle in Δ17O is driven primarily by the seasonal cycle of gross primary productivity (GPP), and that the seasonal variations in both stratospheric transport and fossil fuel emissions play a minor role at our location. Our results therefore strengthen earlier suggestions that GPP is reflected in Δ17O, and call for more seasonally resolved measurements at continental locations like Göttingen.
Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Geochemistry and Petrology
Authors
, , , , , ,