Article ID Journal Published Year Pages File Type
5783371 Geochimica et Cosmochimica Acta 2017 36 Pages PDF
Abstract
In this study, the thermodynamic stabilities of Mn-, Co-, Ni-, Zn-, Sr- and Pb-sulfhydryl bacterial cell envelope complexes were determined for the bacterial species Shewanella oneidensis MR-1. Metal adsorption experiments were conducted as a function of both pH, ranging from 5.0 to 7.0, and metal loading, from 0.5 to 40.0 μmol/g (wet weight) bacteria, in batch experiments in order to determine if metal-sulfhydryl binding occurs. Initially, the data were used to calculate the value of the stability constants for the important metal-sulfhydryl bacterial complexes for each metal-loading condition studied, assuming a single binding reaction for the dominant metal-binding site type under the pH conditions of the experiments. For most of the metals that we studied, these calculated stability constant values increased significantly with decreasing metal loading, strongly suggesting that our initial assumption was not valid and that more than one type of binding occurs at the assumed binding site. We then modeled each dataset with two distinct site types with identical acidity constants: one site with a high metal-site stability constant value, which we take to represent metal-sulfhydryl binding and which dominates under low metal loading conditions, and another more abundant site that we term non-sulfhydryl sites that becomes important at high metal loadings. The resulting calculated stability constants do not vary significantly as a function of metal loading and yield reasonable fits to the observed adsorption behaviors as a function of both pH and metal loading. We use the results to calculate the speciation of metals bound by the bacterial envelope in realistic bacteria-bearing, heavy metal contaminated systems in order to demonstrate the potential importance of metal-sulfhydryl binding in the budget of bacterially-adsorbed metals under low metal-loading conditions.
Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Geochemistry and Petrology
Authors
, ,