Article ID Journal Published Year Pages File Type
5783673 Journal of Volcanology and Geothermal Research 2017 52 Pages PDF
Abstract
The vent area of the eruption scenario used in our study is located north of the Māngere Bridge suburb of Auckland. The volcanic activity in the scenario progresses from seismic unrest, through phreatomagmatic explosions generating pyroclastic surges to a magmatic phase generating a scoria cone and lava flows. We find that most physical damage to transportation networks occurs from pyroclastic surges during the initial stages of the eruption. However, the most extensive service reduction across all networks occurs ~ 6 days prior to the eruption onset, largely attributed to the implementation of evacuation zones; these disrupt crucial north-south links through the south eastern Auckland isthmus, and at times cause up to ~ 435,000 residents and many businesses to be displaced. Ash deposition on road and rail following tephra-producing eruptive phases causes widespread Level-of-Service reduction, and some disruption continues for > 1 month following the end of the eruption until clean-up and re-entry to most evacuated zones is completed. Different tephra dispersal and deposition patterns can result in substantial variations to Level-of-Service and consequences for transportation management. Additional complexities may also arise during times of unrest with no eruption, particularly as residents are potentially displaced for longer periods of time due to extended uncertainties on potential vent location. The Level-of-Service metrics developed here effectively highlight the importance of considering transportation end-users when developing volcanic impact and risk assessments. We suggest that the metrics are universally applicable in other urban environments.
Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Geochemistry and Petrology
Authors
, , , , ,