Article ID Journal Published Year Pages File Type
5783894 Journal of Volcanology and Geothermal Research 2017 63 Pages PDF
Abstract
A numerical approach for simulation of magma intrusion process, considering the couplings of the stress distribution, the viscous fluid flow of magma, and the fracturing of host rock, has been developed to investigate the mechanisms of fracture initiation and propagation in host rock during magma intrusion without pre-placing a set of fractures. The study focused on the dike intrusions filled with injected viscous magma in shallow sediments. A series of numerical modellings were carried out to simulate the process of magma intrusion in host rocks, with particular attention on the magma propagation processes and the formation of intrusion shapes. The model materials were Mohr-Coulomb materials with tension failure and shear failure. The scenarios of both stochastically heterogeneous host rocks and layered host rocks were analyzed. The injected magma formed intrusions shapes of (a) dyke, (b) sill, (c) cup-shaped intrusion, (d) saucer-shaped intrusion. The numerical results were in agreement with the experimental and field observed results, which confirmed the adequacy and the power of the numerical approach.
Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Geochemistry and Petrology
Authors
, , , ,