Article ID Journal Published Year Pages File Type
5784190 Lithos 2017 27 Pages PDF
Abstract
The Aeolian arc (Italy) is characterized by some of the strongest along-the-arc geochemical variations in the planet, making it an ideal location to study the effect of subducting components in modifying the mantle source of island arc melts. Here, we use high-precision element concentrations in primitive phenocrystic olivine from basalts along the arc to elucidate the effects of mantle source modification by the subduction process. Olivines from this arc have Ni concentrations and Fe/Mn ratios that show similarity to peridotite sources that melted to produce mid-ocean ridge basalts. Nevertheless, they also have systematically lower Ca concentrations and Fe/Mn ratios that broadly overlap with olivines from the available global arc array. These phenocrysts also do not show significant variations in Ca as a function of olivine forsterite content. The global data suggest that all olivines crystallizing from island-arc melts have suppressed Ca concentrations and Fe/Mn ratios, relative to olivines derived from melts at intraplate and mid-ocean ridge settings suggesting elevated H2O concentrations and higher oxidation state of the equilibrium melts. Based on olivine chemistry, we interpret a predominantly peridotite source (fluxed by subduction fluids) beneath the Aeolian Arc and also for other examples of arc-related lavas.
Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Geochemistry and Petrology
Authors
, , , , , , , ,