Article ID Journal Published Year Pages File Type
5784891 Precambrian Research 2017 18 Pages PDF
Abstract

•The Bayan Obo REE-Nb-rich carbonatites occur mainly as sills in the Jianshan Formation.•A precise age of 1301 ± 12 Ma was obtained for Bayan Obo carbonatites and REE-Nb mineralization.•Emplacement of the Bayan Obo carbonatites was accompanied by pre-magmatic uplift.•The Bayan Obo carbonatites and REE-Nb deposit were related to continental rifting in the Columbia supercontinent.

The Bayan Obo in the northern North China Craton (NCC) is the world's largest light rare earth element (LREE) deposit and is hosted in carbonatite sills emplaced into sedimentary rocks of the Bayan Obo Group. However, the timing and genesis of the Bayan Obo deposit has been highly controversial for many decades. Here we report a precise zircon 208Pb/232Th age of 1301 ± 12 Ma (N = 47, mean square of weighted deviates [MSWD] = 2.2) for a REE-Nb-rich carbonatite sill from the Bayan Obo deposit. Zircon morphology, trace element compositions and mineral inclusions demonstrate that these zircons were crystallized from REE-Nb-rich carbonatitic magmas and their ages represent the timing of carbonatites and REE-Nb mineralization. The newly obtained age of ca. 1.30 Ga is consistent with field observations of the Bayan Obo REE-Nb deposit and successfully explains why the carbonatites and REE-Nb mineralization in the Bayan Obo deposit occurred mainly in the Jianshan Formation and that no carbonatites and REE-Nb mineralization were identified from the rocks overlying the Jianshan Formation. The new results demonstrate that the Bayan Obo REE-Nb deposit is a product of mantle-derived carbonatite magmatism at ca. 1.30 Ga. Field relations show that emplacement of the Bayan Obo carbonatites was accompanied by pre-magmatic uplift that is considered to be related to rift-to-drift transition. The Bayan Obo carbonatites and REE-Nb deposit are spatially and temporally linked with the newly identified 1.33-1.30 Ga Yanliao large igneous province (LIP) in the northern NCC and were related to continental rifting that have led to breakup of the NCC from the Columbia (Nuna) supercontinent.

Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Geochemistry and Petrology
Authors
, , ,