Article ID Journal Published Year Pages File Type
5785001 Quaternary Geochronology 2017 66 Pages PDF
Abstract
First, I benchmark existing methods of calculating subsurface 26Al, 10Be, and 14C production rates due to cosmic-ray muons against published calibration data from bedrock cores and mine excavations. This shows that methods based on downward propagation of the surface muon energy spectrum fit calibration data adequately. Of these methods, one that uses a simpler geographic scaling method based on energy-dependent attenuation of muons in the atmosphere appears to fit calibration data better than a more complicated one that uses the results of a global particle transport model to estimate geographic variation in the surface muon energy spectrum. Second, I show that although highly simplified and computationally much cheaper exponential function approximations for subsurface production rates are not globally adequate for accurate production rate estimates at arbitrary location and depth, they can be used with acceptable accuracy for many exposure-dating and erosion-rate-estimation applications.
Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Geochemistry and Petrology
Authors
,