Article ID Journal Published Year Pages File Type
5785538 Journal of African Earth Sciences 2017 19 Pages PDF
Abstract
The metasediments in the area are affected by a regional compressional regime with a shortening direction oriented N70E, which resulted in a N20W-oriented fold sequence. The Lake Muhazi granite is present in center of the Karehe anticline. The structural orientations of pegmatites and quartz veins show that two important factors control their emplacement. The first control is the reactivation of pre-existing discontinuities such as the bedding, bedding-parallel joints or strike-slip fault planes. In view of the regional structural grain in the Rwamagana-Musha-Ntunga area, this corresponds with abundant N20W-oriented pegmatites and quartz veins. The reactivation is strongly related to the lithology of the host rocks. The Musha Formation, which mainly consists of decimeter- to meter-scale lithological alternations of metapelite, metasiltstone and metasandstone, represents the most suitable environment for bedding reactivation. This is reflected in the predominance of bedding-parallel pegmatites and quartz veins hosted by the Musha Formation. Strike-parallel joints were mainly observed in the competent lithologies. The second controlling factor is related to the regional post-compressional stress regime. New joints initiated upon emplacement of the pegmatites and quartz veins. The orientations of these joints are influenced by the regional stress regime and resulted in steep EW-oriented pegmatites and quartz veins in the Rwamagana-Musha-Ntunga area. The pegmatites and quartz veins are interpreted as being initiated upon emplacement under influence of the prevailing regional stress regime. This post-compressional stress regime is characterized by a subvertical maximum compressive stress.
Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Geology
Authors
, , , , , ,