Article ID Journal Published Year Pages File Type
5785759 Journal of African Earth Sciences 2017 30 Pages PDF
Abstract
This study presents a multidisciplinary approach to discriminate and map different types and generations of Pan-African granitoids in the Hoggar, southern Algeria, using remote sensing and airborne geophysics in close correlation with previous works and established geological maps. RGB (Red, Green, Blue) combinations of band ratios; principal component analysis (PCA) and image classification for Landsat 7 ETM+ (Enhanced Thematic Mapper Plus), allow spatial discrimination and mapping of granitoid rocks of the studied area (200*350 km). This area extend over four contrasted Pan-African terranes (In Tedeini, Iskel, Tefedest and Laouni terranes, the two latter belong to the LATEA (Laouni-Azrou-n-Fad-Tefedest-Egéré-Aleksod-Assodé-Issalane) metacraton. The airborne magnetic intensity provides a wide range of responses from high values (youngest granitoids) to low values (volcano-sedimentary and gneissic country-rocks). Radiometric data, displaying radioelements concentration, discriminate efficiently the late alkaline granitoids (high values), the calk-alkaline granitoids (intermediate values) and the Tonalite-Trondhjemite-Granodiorite series (low values). This study led to the establishment of a more accurate geological map where the geochemical characteristics of the Pan-African granitoids are determined, including plutons not yet studied, especially in the poorly known In Tedeini terrane, and brings new constraints for the geodynamic development of the Tuareg Shield, which includes the Hoggar.
Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Geology
Authors
, , , , , ,