Article ID Journal Published Year Pages File Type
5785923 Journal of Asian Earth Sciences 2017 8 Pages PDF
Abstract

•We identified a mid-Holocene paleosol sequence with two red clay layers at the Lajia Ruins.•Sediments in the two layers are similar to typical Tertiary red clay deposits.•Two mudflows might have flooded the Lajia region during the mid-Holocene.•Prehistorical human activity may be responsible for the two mudflow events.

The Lajia Ruins in the Guanting Basin, NW China, are a product of the prehistoric Qijia Culture. Like Pompeii, they are a rare example of an archaeological site preserved by a natural disaster and are therefore important in archaeology, anthropology and geology. However, the nature of the disaster(s) responsible for the destruction of the site remains controversial. Most studies have focused on an earthquake and a red clay layer directly overlying the site and a detailed stratigraphic study of the mid-Holocene sedimentary strata combined with other intervals of red clay deposition (hence possible disasters) is lacking. We identified a mid-Holocene paleosol sequence (the Shanglajia section) at the site which contains two layers of red clay, dated to 3950 a BP and 3500 a BP, intercalated within the mid-Holocene paleosol (S0). Subsequent multi-proxy analysis indicated that the characteristics of the two red clay layers resemble those of typical Tertiary red clay deposits and the modern gully deposit at the foot of the Great Red Hills, but are distinctly different from those of the slackwater deposits of the Yellow River and the mid-Holocene paleosol. Our results suggest that, at 3950 a BP and 3500 a BP, two large-scale rainstorm-induced mudflow events, originating from the gullies to the north, flooded the Lajia area on the second terrace of the Yellow River, devastating and burying the human settlements. We infer that the intensified erosion and mass wasting were caused by human activity; in addition, natural factors such as rainstorms and earthquakes, may also have played an important role in triggering catastrophic mudflow events in the Tertiary Red Clay deposits. Overall, our results provide further insights into prehistoric man-land relationships in this environmentally sensitive region which may have implications for modern land use in this region of China and elsewhere.

Graphical abstractDownload high-res image (276KB)Download full-size image

Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Geology
Authors
, , , , , , ,