Article ID Journal Published Year Pages File Type
5786339 Journal of Structural Geology 2017 22 Pages PDF
Abstract

•Alpine Fault rocks exhibit weak friction in high-velocity experiments.•Wet smectitic gouges have the lowest peak friction and steady state friction values.•Rupture propagation through wet smectitic gouges is energetically favorable.•Wet experimental gouge microstructures resemble natural gouge microstructures.

The Alpine Fault in New Zealand is a major plate-bounding structure that typically slips in ∼M8 earthquakes every c. 330 years. To investigate the near-surface, high-velocity frictional behavior of surface- and borehole-derived Alpine Fault gouges and cataclasites, twenty-one rotary shear experiments were conducted at 1 MPa normal stress and 1 m/s equivalent slip velocity under both room-dry and water-saturated (wet) conditions. In the room-dry experiments, the peak friction coefficient (μp = τp/σn) of Alpine Fault cataclasites and fault gouges was consistently high (mean μp = 0.67 ± 0.07). In the wet experiments, the fault gouge peak friction coefficients were lower (mean μp = 0.20 ± 0.12) than the cataclasite peak friction coefficients (mean μp = 0.64 ± 0.04). All fault rocks exhibited very low steady-state friction coefficients (μss) (room-dry experiments mean μss = 0.16 ± 0.05; wet experiments mean μss = 0.09 ± 0.04). Of all the experiments performed, six experiments conducted on wet smectite-bearing principal slip zone (PSZ) fault gouges yielded the lowest peak friction coefficients (μp = 0.10-0.20), the lowest steady-state friction coefficients (μss = 0.03-0.09), and, commonly, the lowest specific fracture energy values (EG = 0.01-0.69 MJ/m2). Microstructures produced during room-dry and wet experiments on a smectite-bearing PSZ fault gouge were compared with microstructures in the same material recovered from the Deep Fault Drilling Project (DFDP-1) drill cores. The near-absence of localized shear bands with a strong crystallographic preferred orientation in the natural samples most resembles microstructures formed during wet experiments. Mechanical data and microstructural observations suggest that Alpine Fault ruptures propagate preferentially through water-saturated smectite-bearing fault gouges that exhibit low peak and steady-state friction coefficients.

Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Geology
Authors
, , , , , , , ,