Article ID Journal Published Year Pages File Type
5787439 Engineering Geology 2017 14 Pages PDF
Abstract

•Increasing the temperature cause reduction of strength and elastic characteristics•Brittle to quasi-brittle failure behaviour with increasing temperature•Induction and propagation of thermally induced inter and intra-granular cracks•Higher influence on mechanical and micro-structural characteristics upon quenching•Wider un-stable crack propagation of quenched specimen over slowly cooled specimen

Understanding the mechanical behaviour of reservoir rock under different temperatures with different cooling conditions is necessary for safe and effective deep geo-engineering applications, including geothermal energy extraction, deep geological disposal of nuclear waste, deep mining and coal gasification projects. The aim of this study is, therefore, to investigate the effect of increasing temperature (from room temperature to 800 °C) followed by two cooling methods (both rapid and slow) on the mechanical behaviour of Australian Strathbogie granite under uniaxial conditions. Further, a separate experimental program was conducted under continuous heating conditions without cooling the samples to compare the results of cooled samples. In order to investigate the strain developments in granite subjected to heating following slow and rapid cooling, ARAMIS photogrammetry technology was adopted, and the corresponding fracture propagation patterns were investigated using an acoustic emission (AE) system. Optical microscopic imaging technology was used to identify the corresponding micro-structural alterations and crack-formation patterns. According to the results, once the rock mass is subjected to higher thermal stresses, strength and elastic characteristics are significantly reduced, mainly due to thermally-induced damage in terms of both inter-granular and intra-granular cracks. The stress-strain response revealed that the failure mode of granite is changed from brittle to quasi-brittle fracturing with increasing temperature. The following cooling causes the strength and elastic characteristics of the granite to be further decreased through the enhancement of crack density, and the influence of rapid cooling is much greater than that of slow cooling, due to sudden thermal shock. This is evidenced by the AE results, according to which both high pre-heated temperatures and high cooling rates cause much quicker crack initiation and propagation in granite with lesser seismicity in the quasi-brittle region.

Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Geotechnical Engineering and Engineering Geology
Authors
, , , , ,