Article ID Journal Published Year Pages File Type
5787717 Engineering Geology 2017 52 Pages PDF
Abstract
This paper proposes a multivariate chaotic Extreme Learning Machine (ELM) model for the prediction of the displacement of reservoir landslides. The displacement time series of the Baishuihe and Bazimen landslides in the Three Gorges Reservoir Area in China are used as examples. The results show that there are evidences of chaos in the displacement time series. The univariate chaotic ELM model and the multivariate chaotic model based on Particle Swarm Optimization and Support Vector Machine (PSO-SVM) model are also applied for the purpose of comparison. The comparisons show that the multivariate chaotic ELM model achieves higher prediction accuracy than the univariate chaotic ELM model and the multivariate chaotic PSO-SVM model.
Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Geotechnical Engineering and Engineering Geology
Authors
, , , ,