Article ID Journal Published Year Pages File Type
5788534 Science Bulletin 2017 7 Pages PDF
Abstract

The ongoing discoveries and studies of novel topological quantum materials have become an emergent and important field of condensed matter physics. Recently, HfTe5 ignited renewed interest as a candidate of a novel topological material. The single-layer HfTe5 is predicted to be a two-dimensional large band gap topological insulator and can be stacked into a bulk that may host a temperature-driven topological phase transition. Historically, HfTe5 attracted considerable interest for its anomalous transport properties characterized by a peculiar resistivity peak accompanied by a sign reversal carrier type. The origin of the transport anomaly remains under a hot debate. Here we report the first high-resolution laser-based angle-resolved photoemission measurements on the temperature-dependent electronic structure in HfTe5. Our results indicated that a temperature-induced Lifshitz transition occurs in HfTe5, which provides a natural understanding on the origin of the transport anomaly in HfTe5. In addition, our observations suggest that HfTe5 is a weak topological insulator that is located at the phase boundary between weak and strong topological insulators at very low temperature.

Graphical abstractDownload high-res image (318KB)Download full-size image

Related Topics
Physical Sciences and Engineering Chemistry Chemistry (General)
Authors
, , , , , , , , , , , , , , , , , , ,