Article ID Journal Published Year Pages File Type
5789114 Science Bulletin 2015 9 Pages PDF
Abstract
Attention networks have three principal components supported by separate subprocesses, which include alerting, orienting, and executive control (EC) networks. Efficiently and accurately extracting useful information from the environment as the function of attention is pivotal to our survival. Previous brain imaging studies have examined activation patterns underlying the different attention networks in different cortical regions, yet focal differences in brain structures related to attention network components were not well understood. Therefore, in this study, voxel-based morphometry was used to investigate the relationship between gray matter volume (GMV) and different attention networks in a large young adult sample (n = 156). As a result, multiple regression analysis revealed that higher alerting scores (stronger alerting ability) were negatively significantly correlated with region gray matter volume (rGMV) in the PCC/PreCu (posterior cingulate cortex/precuneus), which might be associated with continuous maintenance of a vigilant state. Then, lower EC scores (stronger conflict resolution ability) were associated with larger rGMV in the dorsal anterior cingulate cortex, which might be related to high-efficiency executive control processing. Together, findings of the present study provided a unique structural basis of GMV for individual differences in alerting and EC networks.
Related Topics
Physical Sciences and Engineering Chemistry Chemistry (General)
Authors
, , , , , ,