Article ID Journal Published Year Pages File Type
57949 Catalysis Today 2008 12 Pages PDF
Abstract

By applying high throughput synthesis and characterization technologies, we have been optimizing common dry or aqueous synthetic routes for the preparation of high surface area metals and oxides, such as precipitation and modified Pechini methods. For wet combustion synthesis, we have been screening a variety of organic acids as dispersants and developed proprietary recipes for individual metals. By resorting to easily decomposable organic acids (as opposed to citric acid in the original Pechini combustion method), such as glyoxylic acid, oxalacetic acid and ketoglutaric acid, it is possible to obtain high surface area materials for many metals after careful optimization of acid/metal ratio and calcination conditions. Examples are Sn, In, Co, Ru, Ni, Fe, Mn, Y, Ce and Rare Earth oxides and their mixtures. After calcination in the temperature range of about 300–400 °C, surface areas >150 m2/g could be obtained for Er, Tm, Co, Ru, and Nb; >200 m2/g for Sn, Fe, Mn, and Y; >300 m2/g for Ce; and >400 m2/g for Ni oxide. Noteworthy are also >140 m2/g for La2O3, >80 m2/g for CuO, and 75 m2/g for ZnO. For V, around 40 m2/g was possible for the nearly carbon-free V2O5, whereas up to 90 m2/g was obtained for a 90% V–10% carbon composite (by incomplete combustion of the organic acid). Residual carbon helps in stabilizing the porous oxide against sintering. Thus, conventional aqueous routes (precipitation, Pechini) can be competitive to more elaborate and costly methods such as those using organic solvents, sol–gel, supercritical drying or template/hydrothermal synthesis. Combustion synthesis is well suited for the preparation of mixed oxides from mixed metal solutions in aqueous organic acids. Bulk porous Co and CoRu mixed oxides have been screened for liquid phase alcohol oxidations and CoRuCe oxides for CO oxidation and VOC destruction, and doped NiO has been reduced to the metal and tested for various hydrogenations.

Related Topics
Physical Sciences and Engineering Chemical Engineering Catalysis
Authors
, , , , , ,