Article ID Journal Published Year Pages File Type
580498 Journal of Hazardous Materials 2010 10 Pages PDF
Abstract
Spill response managers on inland waterways have indicated the need for an improved decision-support system, one that provides advanced modeling technology within a visual framework. Efforts to address these considerations led the authors to develop an enhanced version of the Spill Management Information System (SMIS 2.0). SMIS 2.0 represents a state-of-the-art 3D hydrodynamic and chemical spill modeling system tool that provides for improved predictive spill fate and transport capability, combined with a geographic information systems (GIS) spatial environment in which to communicate propagation risks and locate response resources. This paper focuses on the application of SMIS 2.0 in a case study of several spill scenarios involving the release of diesel fuel and trichloroethylene (TCE) that were simulated on the Kentucky Lake portion of the Tennessee River, each analyzed at low, average, and high flow conditions. A discussion of the decision-support implications of the model results is also included, as are suggestions for future enhancements to this evolving platform.
Related Topics
Physical Sciences and Engineering Chemical Engineering Chemical Health and Safety
Authors
, , ,