Article ID Journal Published Year Pages File Type
5810428 Medical Hypotheses 2016 14 Pages PDF
Abstract

In all mammalian species studied to date, the initiation of oocyte activation is orchestrated through alterations in intracellular calcium (Ca2+) signaling. Upon sperm binding to the oocyte plasma membrane, a sperm-associated phospholipase C (PLC) isoform, PLC zeta (PLCζ), is released into the oocyte cytoplasm. PLCζ hydrolyzes phosphatidylinositol 4,5-bisphosphate (PIP2) to produce diacylglycerol (DAG), which activates protein kinase C (PKC), and inositol 1,4,5-trisphosphate (IP3), which induces the release of Ca2+ from endoplasmic reticulum (ER) Ca2+ stores. Subsequent Ca2+ oscillations are generated that drive oocyte activation to completion. Ca2+ ionophores such as ionomycin have been successfully used to induce artificial human oocyte activation, facilitating fertilization during intra-cytoplasmic sperm injection (ICSI) procedures. Early studies have also demonstrated that the PKC activator phorbol 12-myristate 13-acetate (PMA) acts synergistically with Ca2+ ionophores to induce parthenogenetic activation of mouse oocytes. Interestingly, the Ca2+-induced signaling cascade characterizing sperm or chemically-induced oocyte activation, i.e. the “shock and live” approach, bears a striking resemblance to the reactivation of latently infected HIV-1 viral reservoirs via the so called “shock and kill” approach, a method currently being pursued to eradicate HIV-1 from infected individuals. PMA and ionomycin combined, used as positive controls in HIV-1 latency reversal studies, have been shown to be extremely efficient in reactivating latent HIV-1 in CD4+ memory T cells by inducing T cell activation. Similar to oocyte activation, T cell activation by PMA and ionomycin induces an increase in intracellular Ca2+ concentrations and activation of DAG, PKC, and downstream Ca2+-dependent signaling pathways necessary for proviral transcription. Interestingly, AMPK, a master regulator of cell metabolism that is activated thorough the induction of cellular stress (e.g. increase in Ca2+ concentration, reactive oxygen species generation, increase in AMP/ATP ratio) is essential for oocyte maturation, T cell activation, and mitochondrial function. In addition to the AMPK kinase LKB1, CaMKK2, a Ca2+/calmodulin-dependent kinase that also activates AMPK, is present in and activated on T cell activation and is also present in mouse oocytes and persists until the zygote and two-cell stages. It is our hypothesis that AMPK activation represents a central node linking T cell activation-induced latent HIV-1 reactivation and both physiological and artificial oocyte activation. We further propose the novel observation that various compounds that have been shown to reactivate latent HIV-1 (e.g. PMA, ionomycin, metformin, bryostatin, resveratrol, etc.) or activate oocytes (PMA, ionomycin, ethanol, puromycin, etc.) either alone or in combination likely do so via stress-induced activation of AMPK.

Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Developmental Biology
Authors
,