Article ID Journal Published Year Pages File Type
5810964 Medical Hypotheses 2015 13 Pages PDF
Abstract

Although the use of antiretroviral therapy (ART) has proven highly effective in controlling and suppressing HIV-1 replication, the persistence of latent but replication-competent proviruses in a small subset of CD4+ memory T cells presents significant challenges to viral eradication from infected individuals. Attempts to eliminate latent reservoirs are epitomized by the 'shock and kill' approach, a strategy involving the combinatorial usage of compounds that influence epigenetic modulation and initiation of proviral transcription. However, efficient regulation of viral pre-mRNA splicing through manipulation of host cell splicing machinery is also indispensible for HIV-1 replication. Interestingly, aberrant alternative splicing of the LMNA gene via the usage of a cryptic splice site has been shown to be the cause of most cases of Hutchinson-Gilford progeria syndrome (HGPS), a rare genetic condition characterized by an accelerated aging phenotype due to the accumulation of a truncated form of lamin A known as progerin. Recent evidence has shown that inhibition of the splicing factors ASF/SF2 (or SRSF1) and SRp55 (or SRSF6) leads to a reduction or an increase in progerin at both the mRNA and protein levels, respectively, thus altering the LMNA pre-mRNA splicing ratio. It is also well-established that during the latter stages of HIV-1 infection, an increase in the production and nuclear export of unspliced viral mRNA is indispensible for efficient HIV-1 replication and that the presence of ASF/SF2 leads to excessive viral pre-mRNA splicing and a reduction of unspliced mRNA, while the presence of SRp55 inhibits viral pre-mRNA splicing and aids in the generation and translation of unspliced HIV-1 mRNAs. The splicing-factor associated protein and putative mitochondrial chaperone p32 has also been shown to inhibit ASF/SF2, increase unspliced HIV-1 viral mRNA, and enhance mitochondrial DNA replication and oxidative phosphorylation. It is our hypothesis that activation of AMPK, a master regulator of cellular metabolism which has been shown to activate PKC-theta (θ) and is essential for T cell activation, may modulate the splicing activities of SRp55 as well as enhance a p32-mediated inhibition of ASF/SF2-induced alternative splicing, potentially correcting aberrant alternative splicing in the LMNA gene and reactivating latent viral HIV-1 reservoirs. Moreover, similar epigenetic modifications and cell cycle regulators also characterize the analogous stages of premature senescence in progeroid cells and latency in HIV-1 infected T cells. AMPK-activating compounds including metformin and resveratrol may thus embody a novel treatment paradigm linking the pathophysiology of HGPS with that of HIV-1 latency.

Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Developmental Biology
Authors
,