Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
581275 | Journal of Hazardous Materials | 2009 | 7 Pages |
Abstract
Friedel's salt (3CaO·Al2O3·CaCl2·10H2O or Ca4Al2(OH)12Cl2(H2O)4) is a calcium aluminate hydrate formed by hydrating cement or concrete in seawater at a low cost. In the current study, we carefully examined the adsorption behaviors of Friedel's salt for Cr(VI) from aqueous solution at different concentrations and various initial pHs. The adsorption kinetic data are well fitted with the pseudo-first-order Lageren equation at the initial Cr(VI) concentration from 0.10 to 8.00 mM. Both the experimental and modeled data indicate that Friedel's salt can adsorb a large amount of Cr(VI) (up to 1.4 mmol Cr(VI)/g) very quickly (t1/2 = 2-3 min) with a very high efficiency (>99% Cr(VI) removal at [Cr] < 4.00 mM with 4.00 g/L of adsorbent) in the pH range of 4-10. In particular, the competitive adsorption tests show that the Cr(VI) removal efficiency is only slightly affected by the co-existence of Clâ and HCO3â. The Cr(VI)-fixation stability tests show that only less than 0.2% adsorbed Cr(VI) is leaching out in water at pH 4-10 for 24 h because the adsorption/exchange of Cr(VI) with Friedel's salt leads to the formation of a new stable phase (3CaO·Al2O3·CaCrO4·10H2O). This research thus suggests that Friedel's salt is a potential cost-effective adsorbent for Cr(VI) removal in wastewater treatment.
Related Topics
Physical Sciences and Engineering
Chemical Engineering
Chemical Health and Safety
Authors
Yingchun Dai, Guangren Qian, Yali Cao, Ying Chi, Yunfeng Xu, Jizhi Zhou, Qiang Liu, Zhi Ping Xu, ShiZhang Qiao,