Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
5814392 | Neuropharmacology | 2014 | 8 Pages |
Abstract
Alzheimer disease (AD) is a progressive neurodegenerative disease characterized by extracellular deposits of beta amyloid (Aβ) and neuronal loss particularly in the hippocampus. Accumulating evidences have implied that insulin signaling impairment plays a key role in the pathology of AD; as much as it is considered as type 3 Diabetes. MAPKs are a group of signaling molecules which are involved in pathobiology of AD. Therefore this study was designed to investigate if intrahippocampal insulin hinders Aβ-related memory deterioration, hippocampal apoptosis and MAPKs signaling alteration induced by Aβ. Adult male Sprague-Dawely rats weighing 250-300 g were used in this study. The canules were implanted bilaterally into CA1 region. Aβ25-35 was administered during first 4 days after surgery (5 μg/2.5 μL/daily). Insulin treatment (0.5 or 6 mU) was done during days 4-9. The animal's learning and memory capability was assessed on days 10-13 using Morris water maze. After finishing of behavioral studies the hippocampi was isolated and the amount of hippocampal cleaved caspase 3 (the landmark of apoptosis) and the phosphorylated (activated) forms of P38, JNK and ERK was analyzed by western blot. The results showed that insulin in 6 but not 0.5 mU reversed the memory loss induced by Aβ25-35. Western blot analysis revealed that Aβ25-35 induced elevation of caspase-3 and all 3 MAPks subfamily activity, while insulin in 6 mu restored ERK and P38 activation but has no effect on JNK. This study disclosed that intrahippocampal insulin treatment averts not only Aβ-induced memory deterioration but also hippocampal caspase-3, ERK and P38 activation.
Related Topics
Life Sciences
Neuroscience
Behavioral Neuroscience
Authors
Rasoul Ghasemi, Asadollah Zarifkar, Karim Rastegar, Nader maghsoudi, Maryam Moosavi,