Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
5814636 | Neuropharmacology | 2014 | 8 Pages |
Abstract
γ-Secretase is the enzyme responsible for the intramembranous proteolysis of various substrates, such as amyloid precursor protein (APP) and Notch. Amyloid-β peptide 42 (Aβ42) is produced through the sequential proteolytic cleavage of APP by β- and γ-secretase and causes the synaptic dysfunction associated with memory impairment in Alzheimer's disease. Here, we identified a novel cyclohexylamine-derived γ-secretase modulator, {(1R*,2S*,3R*)-3-[(cyclohexylmethyl)(3,3-dimethylbutyl)amino]-2-[4-(trifluoromethyl)phenyl]cyclohexyl}acetic acid (AS2715348), that may inhibit this pathological response. AS2715348 was seen to reduce both cell-free and cellular production of Aβ42 without increasing levels of APP β-carboxyl terminal fragment or inhibiting Notch signaling. Additionally, the compound increased Aβ38 production, suggesting a shift of the cleavage site in APP. The inhibitory potency of AS2715348 on endogenous Aβ42 production was similar across human, mouse, and rat cells. Oral administration with AS2715348 at 1 mg/kg and greater significantly reduced brain Aβ42 levels in rats, and no Notch-related toxicity was observed after 28-day treatment at 100 mg/kg. Further, AS2715348 significantly ameliorated cognitive deficits in APP-transgenic Tg2576 mice. Finally, AS2715348 significantly reduced brain Aβ42 levels in cynomolgus monkeys. These findings collectively show the promise for AS2715348 as a potential disease-modifying drug for Alzheimer's disease.
Related Topics
Life Sciences
Neuroscience
Behavioral Neuroscience
Authors
Yasuyuki Mitani, Hiroki Akashiba, Kyoko Saita, Junko Yarimizu, Hiroshi Uchino, Mayuko Okabe, Makoto Asai, Shingo Yamasaki, Takashi Nozawa, Noritoshi Ishikawa, Yoshitsugu Shitaka, Keni Ni, Nobuya Matsuoka,