Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
5814652 | Neuropharmacology | 2014 | 12 Pages |
Abstract
2,4-Bis(p-hydroxyphenyl)-2-butenal (Butenal), a tyrosine-fructose Maillard reaction product has been demonstrated as an effective compound for prevention of neuroinflammatory diseases. However, this compound was vulnerable to environmental factors. Our research has been continuously made to improve druggability of Butenal and identified 2,4-bis(4-hydroxyphenyl)but-2-enal diacetate (HPBD) as an alternative. Herein, to investigate potential anti-neuroinflammatory and anti-amyloidogenic effects of HPBD, we treated HPBD (0.5, 1, and 2 μg/ml) on the lipopolysaccharides (LPS) (1 μg/ml) stimulated astrocytes and microglial BV-2 cell. HPBD inhibited LPS-induced NO and ROS production, and LPS-elevated expression of iNOS, COX2, β-site APP-cleaving enzyme 1 (BACE1), C99, and Aβ1-42 levels as well as attenuation of β-secretase activities. The activation of nuclear factor-kappaB (NF-κB), signal transducer and activator of transcription1 (STAT1), and STAT3 was concomitantly inhibited by HPBD. Moreover, siRNA targeting STAT3 abolished HPBD-induced inhibitory effects on neuro-inflammation and amyloidogenesis. In addition, pull down assay and docking model showed interaction of HPBD with STAT3. These findings suggest that HPBD may be useful and potentially therapeutic choices for the treatment of neuroinflammatory diseases.
Related Topics
Life Sciences
Neuroscience
Behavioral Neuroscience
Authors
Jin A. Kim, Hyung-Mun Yun, Peng Jin, Hee Pom Lee, Jin Yi Han, Venkatareddy Udumula, Dong Cheul Moon, Sang Bae Han, Ki Wan Oh, Young Wan Ham, Heon-Sang Jung, Ho Sueb Song, Jin Tae Hong,