Article ID Journal Published Year Pages File Type
5814667 Neuropharmacology 2014 8 Pages PDF
Abstract

•Fingolimod had different beneficial effects during different stages of DTH.•Fingolimod reduced immune cell recruitment, BBB breakdown and microglial activation.•Fingolimod reduced demyelination behind an intact BBB.•The effect on demyelination was independent of lymphocyte infiltration.•The results suggest a direct CNS effect of fingolimod in this model.

We examined the effect of fingolimod (0.1 and 0.3 mg/kg/day orally) on blood-brain barrier (BBB) function, demyelination and leukocyte recruitment at different stages of the focal delayed-type hypersensitivity (DTH) multiple sclerosis model in Lewis rats using immunohistochemistry and gadolinium (Gd)-enhancing magnetic resonance imaging (MRI). During DTH lesion formation, fingolimod reduced BBB breakdown (52%; p = 0.05), and lymphocyte (53%; p = 0.016) and macrophage/activated microglia (49%; p = 0.002) recruitment to the DTH lesion compared with vehicle-treated controls. Following DTH lesion establishment, fingolimod reduced the area of BBB breakdown (75%; p = 0.04), lymphocyte recruitment to the DTH lesion (41%; p = 0.01) and activated microglia outside of the lesion core (p = 0.01), but did not reduce recruitment of macrophages/activated microglia within the DTH lesion. During the chronic disease phase, when the BBB was resealed, fingolimod reduced the area of demyelination by 43% (p = 0.019) compared with vehicle-treated controls, while not affecting lymphocyte recruitment within the lesion. Fingolimod had different beneficial effects during different stages of DTH, reducing BBB breakdown and lesion development/brain tissue damage whilst reducing lymphocyte recruitment when BBB breakdown was apparent, but reducing demyelination independent of lymphocyte infiltration behind an intact BBB. These results suggest a direct CNS effect of fingolimod in this model.

Related Topics
Life Sciences Neuroscience Behavioral Neuroscience
Authors
, , , , ,