Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
582135 | Journal of Hazardous Materials | 2009 | 5 Pages |
Abstract
A strain CSCr-3 with high Cr(VI)-reducing ability under alkaline conditions was isolated from a chromium landfill and identified as Ochrobactrum sp. on the basis of 16S rRNA gene sequence analysis. The cells were rod shaped, Gram-negative and motile. The physiological characteristics and Cr(VI)-reduction of the strain were also studied. The results showed that the Ochrobactrum sp. strain CSCr-3 was tolerant to very high concentration of Cr(VI) (800 mg/L) and capable of reducing different forms of Cr(VI) (chromate and dichromate), under a wide range of temperatures (25-40 °C) and pH (7-11) with optimum at 35 °C and initial pH 10. Higher rates of Cr(VI)-reduction were observed with higher initial cell and Cr(VI) concentrations. Strain CSCr-3 could reduce Cr(VI) very efficiently over a wide range of Cr(VI) concentrations (100-800 mg/L). The addition of glucose caused a dramatic increase in Cr(VI)-reduction by Ochrobactrum sp. CSCr-3, while the presence of sulfate or nitrate had no influence. The presence of other metals, such as Cu, Co, Mn, etc., significantly stimulated Cr(VI)-reduction ability by the strain CSCr-3. The results obtained in this study have significance for the bioremediation of chromate pollution.
Keywords
Related Topics
Physical Sciences and Engineering
Chemical Engineering
Chemical Health and Safety
Authors
Zhiguo He, Fengling Gao, Tao Sha, Yuehua Hu, Chao He,