Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
582248 | Journal of Hazardous Materials | 2009 | 9 Pages |
Abstract
The dechlorination of 2,4-dichlorophenol (2,4-DCP) by Ni-Fe nanoparticles in the presence of humic acid (HA) was investigated to understand the feasibility of using Ni-Fe for the in situ remediation of contaminated groundwater. 2,4-DCP was first adsorbed by Ni-Fe nanoparticles, then quickly reduced to o-chlorophenol (o-CP), p-chlorophenol (p-CP), and finally to phenol (P). However, the introduction of HA decreased the removal percentage of 2,4-DCP, as a result, the phenol production rates dropped from 86% (in the absence of HA) to 29% within 2 h. Our data suggested that the dechlorination rate was dependent on a number of factors including Ni-Fe availability, Ni loading percentage over Fe, temperature, pH, and HA concentration. In particular, the removal percentage of 2,4-DCP was determined to be 100, 99, 95, 84 and 69%, for HA concentrations of 0, 5, 10, 30 and 40 mg Lâ1, respectively. The kinetic calculations for the dechlorination of 2,4-DCP indicated that k values for 2,4-DCP dechlorination dropped from 0.14, 0.051, 0.039, 0.021 to 0.011 minâ1 with increasing concentrations of HA from 0, 5, 10, 30 to 40 mg Lâ1.
Related Topics
Physical Sciences and Engineering
Chemical Engineering
Chemical Health and Safety
Authors
Zhen Zhang, Naman Cissoko, Jingjing Wo, Xinhua Xu,