Article ID Journal Published Year Pages File Type
5827089 European Journal of Pharmacology 2015 6 Pages PDF
Abstract

Menaquinones (MKs) have been reported to induce apoptosis in rheumatoid arthritis (RA) synovial cells. Recently, menaquinone-4 (MK-4) was proven as a new potential agent for the treatment of RA. However, menaquinone-7 (MK-7) has greater bioavailability and efficacy than MK-4 after oral administration. Yet, the therapeutic benefits of MK-7 in the management of patients with RA have never been addressed. This study was designed to clarify the therapeutic role of MK-7 added to normal therapeutic regimen of RA in patients with different stages of the disease with a clinical follow up through a randomized clinical trial. In a cross sectional study, 84 RA patients (24 male, 60 female) (average age=47.2 years) were enrolled in this study. The patients were divided into MK-7 treated group (n=42) and MK-7 naïve group (n=42). MK-7 capsules were administered in a dose of 100 µg/day for three months in the first group without changing in other medications. The clinical and biochemical markers on RA patients treated with MK-7 and naïve group were assessed. In MK-7 treated group, serum concentrations of MK-7 were monitored before and after three months of MK-7 administration. In the cross sectional study, a significant decrease in MK-7 treated group for the levels of undercarboxylated osteocalcin (ucOC), erythrocyte sedimentation rate (ESR), disease activity score assessing 28 joints with ESR (DAS28-ESR), C-reactive protein (CRP) and matrix metalloproteinase (MMP-3) was found. In MK-7 treated group, a marked decrease in RA clinical and biochemical markers for moderate and good response compared to non-responders was observed in ucOC, ESR and DAS28-ESR. A marked increase in the levels of MK-7 for the moderate and good responders compared to non-responders was observed. The results suggest that MK-7 improves disease activity in RA patients. Therefore, MK-7 represents a new promising agent for RA in combination therapy with other disease modifying antirheumatic drugs.

Related Topics
Life Sciences Neuroscience Cellular and Molecular Neuroscience
Authors
, , ,