Article ID Journal Published Year Pages File Type
5828235 European Journal of Pharmacology 2014 7 Pages PDF
Abstract
Functional coupling between serotonin2A (5-HT2A) receptors and Gαq proteins in native brain membranes has been sparsely reported thus far. In the present study, the guanosine-5׳-O-(3-[35S]thio)triphosphate ([35S]GTPγS) binding assay combined with immunoprecipitation using magnetic beads (Dynabeads Protein A) coated with anti-Gαq antibody was developed. Under experimental conditions optimised for assay constituents (GDP, MgCl2, and NaCl), for contents of membrane protein, anti-Gαq antibody, and Dynabeads Protein A, and for the incubation period, 5-HT stimulated specific [35S]GTPγS binding to Gαq in rat cerebral cortical membranes in a concentration-dependent and saturable manner, with a signal/noise ratio that was sufficiently high for further detailed pharmacological characterisation. This characterisation revealed an involvement of 5-HT2A receptors. Activation of Gαq proteins was also detectable by the addition of carbachol via muscarinic acetylcholine M1 receptors, (-)-epinephrine, and dopamine, but not by L-glutamate or (±)-baclofen. When 5-HT2A receptors and M1 receptors were stimulated simultaneously, there were non-additive effects, indicating that the two receptors were coupled to the same components of Gαq proteins in the rat cerebral cortex. This method will serve as an efficacious strategy for neurobiological investigations aimed at elucidating the physiological and pathological implications of signal transduction systems mediated via Gαq proteins coupled with 5-HT2A receptors and muscarinic acetylcholine M1 receptors.
Related Topics
Life Sciences Neuroscience Cellular and Molecular Neuroscience
Authors
, , ,