Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
5828476 | European Journal of Pharmacology | 2013 | 9 Pages |
Abstract
Cell-cell interaction through binding of adhesion molecules on monocytes to their ligands on T-cells plays roles in cytokine production and lymphocyte proliferation. High mobility group box 1 (HMGB1), an abundant and conserved nuclear protein, acts in the extracellular environment as a primary pro-inflammatory signal. HMGB1 induces expression of intercellular adhesion molecule (ICAM), B7.1, B7.2 and CD40 on monocytes, resulting in production of interferon (IFN)-γ and tumor necrosis factor (TNF)-α production and lymphocyte proliferation in human peripheral blood mononuclear cells (PBMCs). Histamine inhibits pro-inflammatory cytokine production via histamine H2-receptors; however, it is not known whether histamine inhibits HMGB1 activity. This study was designed to study the inhibitory effect of histamine on HMGB1 activity. We examined the effect of histamine on HMGB1-induced expression of ICAM-1, B7.1, B7.2 and CD40 on monocytes, production of IFN-γ and TNF-α and lymphocyte proliferation in PBMCs. Histamine inhibited HMGB1 activity in a concentration-dependent manner. The effects of histamine were partially ablated by the H2-receptor antagonist, famotidine, and mimicked by the H2/H4-receptor agonists, dimaprit and 4-methylhistamine. Histamine induced cyclic adenosine monophosphate (cAMP) production in the presence and absence of HMGB1. The effects of histamine were reversed by the protein kinase A (PKA) inhibitor, H89, and mimicked by the membrane-permeable cAMP analog, dibutyryl cAMP (dbcAMP), and the adenylate cyclase activator, forskolin. These results together indicated that histamine inhibited HMGB1 activity
Keywords
Related Topics
Life Sciences
Neuroscience
Cellular and Molecular Neuroscience
Authors
Hideo Takahashi, Hiroshi Sadamori, Kiyoshi Teshigawara, Atsuko Niwa, Keyue Liu, Hidenori Wake, Shuji Mori, Tadashi Yoshino, Masahiro Nishibori,