Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
5828503 | European Journal of Pharmacology | 2013 | 4 Pages |
Abstract
This study compared the peripheral analgesic effects of a novel opioid agonist 14-O-methylmorphine-6-O-sulfate (14-O-MeM6SU), to that of non-peptide (morphine, fentanyl) and peptide opioid agonists (Met-enkephalin; met-ENK and β-endorphin; β-END) in a model of localized inflammatory pain evoked by intraplantar (i.pl.) Freund's complete adjuvant (FCA). Nociceptive responses to local opioid agonists were measured by pressure paw-withdrawal procedures. In addition, the antinociceptive efficacy and potency of these test compounds in vivo was compared to that in vitro using the rat vas deferens (RVD) bioassay. Intraplantar 14-O-MeM6SU (0.32-2.53 nmol/rat), morphine (14.95-112.15 nmol/rat), fentanyl (0.19-2.36 nmol/rat), met-ENK (0.10-10 nmol/rat) and β-END (0.77-5.00 nmol/rat) dose dependently increased paw pressure thresholds exclusively in inflamed hindpaws. At higher doses analgesic effects were also seen in noninflamed paws for 14-O-MeM6SU, morphine and fentanyl but not for met-ENK or β-END. The maximal possible local analgesic effect (%) measured in inflamed paws was 50.6±2.7, 18.23±1.78, 37.44±2.17, 36.00±1.43, and 40.69±0.91 for 14-O-MeM6SU, morphine, fentanyl, met-ENK and β-END, respectively. Interestingly, i.pl. administered opioid peptides met-ENK and β-END displayed a peripheral analgesic ceiling effect. This local antinociception was antagonized by co-administered opioid antagonist naloxone-methiodide (NAL-M). Similar to the analgesic testing, the RVD showed the following efficacy order of the test compounds: 14-O-MeM6SU>β-END>fentanyl>met-ENK⪢morphine. Taken together, 14-O-MeM6SU was more potent than morphine, fentanyl and met-ENK and β-END and displayed superiority in the maximum antinociceptive effects. The superiority of local antinociceptive effects of 14-O-MeM6SU might be due to both pharmacodynamic and pharmacokinetic factors.
Related Topics
Life Sciences
Neuroscience
Cellular and Molecular Neuroscience
Authors
Baled. I. Khalefa, Shaaban A. Mousa, Mohammed Shaqura, Erzsébet Lackó, Sándor Hosztafi, Pál Riba, Michael Schäfer, Péter Ferdinandy, Susanna Fürst, Mahmoud Al-Khrasani,