Article ID Journal Published Year Pages File Type
5828554 European Journal of Pharmacology 2013 7 Pages PDF
Abstract
This study examined the effect of vilazodone, a combined serotonin (5-HT) reuptake inhibitor and 5-HT1A receptor partial agonist, paroxetine and fluoxetine on the sensitivity of 5-HT1A autoreceptors of serotonergic dorsal raphe nucleus neurons in rats. These effects were assessed by determining the intravenous dose of (±)-8-hydroxy-2-(di-n-propylamino)-tetralin (8-OH-DPAT) required to suppress the basal firing rate of these neurons by 50% (ID50) in anesthetized rats using in vivo electrophysiology. 5-HT uptake inhibition was determined by the ability of the compounds to reverse (±)-p-chloroamphetamine (PCA)-induced rat hypothalamic 5-HT depletion ex vivo. Acute vilazodone administration (0.63 and 2.1 µmol/kg, s.c.), compared with vehicle, significantly increased (2-3-fold) the ID50 of 8-OH-DPAT at 4 h, but not 24 h after administration. Subchronic administration (3 days) significantly increased the ID50 value at 4 h (3-4-fold) and at 24 h (~2-fold). In contrast, paroxetine and fluoxetine at doses that were supramaximal for 5-HT uptake inhibition did not significantly alter the ID50 value of 8-OH-DPAT after acute or subchronic administration. Vilazodone antagonized the action of PCA 3.5 h and 5 h after a single dose (ID50 1.49 and 0.46 µmol/kg, s.c., respectively), but was inactive 18 h post-administration, corroborating the electrophysiological results at 24 h following acute administration. The results are consistent with the concept of rapid and, following repeated treatment, prolonged inhibition of 5-HT1A autoreceptors by vilazodone. This effect could occur by either direct interaction with, or desensitization of, these receptors, an effect which cannot be ascribed to vilazodone's 5-HT reuptake inhibiting properties.
Related Topics
Life Sciences Neuroscience Cellular and Molecular Neuroscience
Authors
, , , , , , ,