Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
5828660 | European Journal of Pharmacology | 2013 | 12 Pages |
Abstract
The effects of a snake venom Lys-49 phospholipase A2 (PLA2) homolog named MT-II, devoid of enzymatic activity, on the biosynthesis of prostaglandins and protein expression of cyclooxygenase-2 (COX-2) and signaling pathways involved were evaluated in mouse macrophages in culture and in peritoneal cells ex vivo. Stimulation of macrophages with MT-II leads to production of prostaglandin D2 (PGD2) and prostaglandin E2 (PGE2) and protein expression of COX-2 and microsomal prostaglandin E synthase-1 (mPGES-1). Inhibition of cytosolic PLA2 (cPLA2), but not Ca2+ independent PLA2 (iPLA2) reduced release of PGD2 and PGE2 and expression of COX-2 induced by MT-II. Inhibition of nuclear factor κB (NF-κB) significantly reduced MT-II-induced PGE2, but not PGD2 production and COX-2 expression. Inhibitors of either protein kinase C (PKC), protein tyrosine kinase (PTK), or extracellular signal-regulated kinase (ERK) pathways abrogated MT-II-induced NF-κB activation and reduced COX-2 expression and PGE2 release, whereas the p38 mitogen-activated protein kinase (MAPK) inhibitor reduced MT-II-induced COX-2 expression and PGD2 production. Inhibition of phosphatidylinositol-3-kinase (PI3K) pathway abrogated MT-II-induced NF-κB activation, but affected neither prostaglandins production nor COX-2 expression. MT-II-induced production of PGD2 and PGE2 and COX-2 expression were also observed in vivo after intraperitoneal injection into mice. Collectively, our data demonstrate that a catalytically-inactive PLA2 homolog is capable of inducing prostaglandins biosynthesis and COX-2 expression in macrophages in both in vitro and in vivo models, indicating that the enzymatic activity of PLA2 is not necessary to trigger these effects. MT-II-activated NF-κB, cPLA2 and distinct protein kinases are the principal steps involved in these cellular events.
Related Topics
Life Sciences
Neuroscience
Cellular and Molecular Neuroscience
Authors
Vanessa Moreira, Pollyana Cristina Maggio de Castro Souto, Marco Aurélio Ramirez Vinolo, Bruno Lomonte, José MarÃa Gutiérrez, Rui Curi, Catarina Teixeira,