Article ID Journal Published Year Pages File Type
5828963 European Journal of Pharmacology 2013 27 Pages PDF
Abstract
Chronic diabetes mellitus initiates apoptosis and negatively affects synaptic plasticity in the hippocampus with ensuing impairments of learning and memory. Berberine, an isoquinoline alkaloid, exhibits anti-diabetic, antioxidant and nootropic effects. This study was conducted to evaluate the effect of berberine on hippocampal CA1 neuronal apoptosis, synaptic plasticity and learning and memory of streptozotocin (STZ)-diabetic rats. Long-term potentiation (LTP) in perforant path-dentate gyrus synapses was recorded for assessment of synaptic plasticity and field excitatory post-synaptic potential (fEPSP) slope and population spike (PS) amplitude. PS amplitude and fEPSP significantly decreased in diabetic group versus control, and chronic berberine treatment (100 mg/kg/day, p.o.) restored PS amplitude and fEPSP and ameliorated learning and memory impairment and attenuated apoptosis of pyramidal neurons in the CA1 area, as determined by the terminal deoxynucleotidyl transferase (TdT)-mediated dUTP nick end-labeling method. In summary, chronic berberine treatment of STZ-diabetic rats significantly ameliorates learning and memory impairment and part of its beneficial effect could be attributed to improvement of synaptic dysfunction and anti-apoptotic property.
Related Topics
Life Sciences Neuroscience Cellular and Molecular Neuroscience
Authors
, , , , ,