Article ID Journal Published Year Pages File Type
5830433 European Journal of Pharmacology 2011 9 Pages PDF
Abstract
We have recently reported that treatment with the 5-HT2A receptor antagonist ketanserin in the inflamed paw raises the nociceptive threshold above normal level (hypoalgesia) and this response is naloxone-reversible. The present study aimed to investigate neurochemical changes at the site of inflammation and in dorsal root ganglia (DRG) and the spinal cord following the blockade of 5-HT2A receptors. Intraplantar injection of ketanserin (20 μg) inhibited carrageenan-induced increase in CGRP immunoreactivity-positive neurons in DRG. On the other hand, administration of ketanserin (20 μg) and 5-HT (10 μg), but not vehicle, enhanced and inhibited recruitment of β-endorphin-expressing immune cells, respectively, in subcutaneous loci of inflamed hindpaw. Moreover, the treatment with ketanserin increased the number of endomorphine-containing cells in the inflamed paw and μ-opioid receptor-expressing neurons in DRG at L4-5 but reduced the expression of endomorphine in superficial layers of the lumbar spinal cord. The present study provided evidence at the cellular level showing that the blockade of 5-HT2A receptors inhibited inflammation-associated increase in pronociceptive mediator, and that the pronociceptive property of 5-HT is mediated by the suppression of inflammation-activated opioid mechanism. Therefore, targeting the 5-HT2A receptors in the site of inflammation may be a promising approach to inhibit inflammatory pain.
Related Topics
Life Sciences Neuroscience Cellular and Molecular Neuroscience
Authors
, , , ,