Article ID Journal Published Year Pages File Type
5830653 European Journal of Pharmacology 2008 9 Pages PDF
Abstract

We designed a randomized controlled study to identify and compare the liver tissue responses in systemic hypoxia and resuscitation with 21% and 100% oxygen using an animal model of neonatal hypoxia and reoxygenation. Twenty-seven piglets (1-3 days old, weight 1.5-2.0 kg) were acutely instrumented and mechanically ventilated. The animals underwent 2 h of normocapnic alveolar hypoxia (10-15% oxygen) then reoxygenation with 21% or 100% oxygen for 1 h, then 1 h with 21% oxygen. Controls were sham-operated without hypoxia-reoxygenation. After 2 h of reoxygenation liver tissue samples were immediately processed for histological and biochemical analyses of markers of oxidative stress and tissue injury. Two hours of hypoxia caused a significant reduction in mean arterial pressure with cardiogenic shock and metabolic acidemia, with similar recovery upon resuscitation with 21% and 100% oxygen. After 2 h of reoxygenation, the hepatic GSSG:total glutathione ratio and matrix metalloproteninase-9 activity, which correlated with the portal venous oxygenation at 15 min of reoxygenation, were greater in the 100% group and hepatic lactate level was higher in the 21% group than the controls (all P < 0.05). Both hypoxic-reoxygenated groups had similarly elevated hepatic Bcl-2 levels. Apart from more non-distinct mitochondria identified in the 100% group, hepatic tissue adenylate energy charge and plasma transaminases levels did not differ among groups. We concluded that in this acute model of neonatal hypoxia and reoxygenation, resuscitation using 21% oxygen avoids the excess oxidative stress and elevated matrix metalloproteninase-9 activity in the liver when 100% oxygen was used. The study supports the conservative use of oxygen in optimizing post-hypoxic hepatic recovery.

Related Topics
Life Sciences Neuroscience Cellular and Molecular Neuroscience
Authors
, , , , , , , ,