Article ID Journal Published Year Pages File Type
5832257 International Immunopharmacology 2015 8 Pages PDF
Abstract

•Sargaquinoic acid (SQA) inhibited iNOS and COX-2 expression at transcriptional level.•SQA induced the increased expression of HO-1 and translocation of Nrf2 into nucleus.•SQA could be used as a therapeutic agent for the inflammatory diseases.

Myagropsis myagroides, a brown alga, showed strong anti-inflammatory activities in the previous studies. In this study, we isolated a strong anti-inflammatory compound, sargaquinoic acid (SQA), from M. myagroides and investigated the anti-inflammatory action using lipopolysaccharide (LPS)-stimulated RAW 264.7 cells. SQA suppressed the production of inducible nitric oxide synthase and cyclooxygenase-2 in LPS-stimulated cells as well as that of reactive oxygen species. As a result, SQA inhibited the production of NO, prostaglandin E2, and pro-inflammatory cytokines. LPS-induced transcriptional activation of nuclear factor-κB (NF-κB) was remarkably inhibited by SQA treatment through the prevention of inhibitor κB-α degradation. The regulation of NF-κB activation was also mediated by the phosphorylation of ERK and Akt in LPS-stimulated RAW 264.7 cells. Moreover, SQA induced the production of heme oxygenase 1 via activation of transcription factor Nrf2. These results indicate that SQA inhibits the LPS-induced expression of inflammatory mediators via suppression of ERK and Akt-mediated NF-κB pathway as well as up-regulation of Nrf2/HO-1 pathway, indicating that SQA has a potential therapeutic and preventive application in various inflammatory diseases.

Related Topics
Life Sciences Immunology and Microbiology Immunology
Authors
, , , , , , , , ,