Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
5832803 | International Immunopharmacology | 2014 | 9 Pages |
â¢Hemin protected against sepsis-induced acute lung injuryâ¢NLRP3 inflammasome-dependent cytokine release was inhibited by hemin.â¢Expression and activity of NLRP3 inflammasome were inhibited by hemin.â¢Heme oxygenase-1 is involved in the effect of hemin on NLRP3 inflammasome.
NLRP3 inflammasome activation contributes to acute lung injury (ALI), accelerating caspase-1 maturation, and resulting in IL-1β and IL-18 over-production. Heme oxygenase-1 (HO-1) plays a protective role in ALI. This study investigated the effect of hemin (a potent HO-1 inducer) on NLRP3 inflammasome in sepsis-induced ALI. The sepsis model of cecal ligation and puncture (CLP) was used in C57BL6 mice. In vivo induction and suppression of HO-1 were performed by pretreatment with hemin and zinc protoporphyrin IX (ZnPP, a HO-1 competitive inhibitor) respectively. CLP triggered significant pulmonary damage, neutrophil infiltration, increased levels of IL-1β and IL-18, and edema formation in the lung. Hemin pretreatment exerted inhibitory effect on lung injury and attenuated IL-1β and IL-18 secretion in serum and lung tissue. In lung tissues, hemin down-regulated mRNA and protein levels of NLRP3, ASC and caspase-1. Moreover, hemin reduced malondialdehyde and reactive oxygen species production, and inhibited NF-κB and NLRP3 inflammasome activity. Meanwhile, hemin significantly increased HO-1 mRNA and protein expression and HO-1 enzymatic activity. In contrast, no significant differences were observed between the CLP and ZnPP groups. Our study suggests that hemin-inhibited NLRP3 inflammasome activation involved HO-1, reducing IL-1β and IL-18 secretion and limiting the inflammatory response.
Graphical abstractDownload full-size image