Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
5832957 | International Immunopharmacology | 2014 | 5 Pages |
â¢Chromatin conformation alters during macrophage activation.â¢Altered chromatin conformation correlates with gene regulation.â¢Computational method predicts chromatin structure.
Microbial-lipopolysacharide (LPS), interleukin 4 (IL-4) and interferon gamma (IFN-γ) polarise macrophages into “innate”, “alternative” and “classical”, activation states by selective gene regulation. Expression of MARCO, CD200, CD200R1 (innate), MRC1 (alternative) and H2-Eb1 (classical) selectively marks these distinct activation states. Epigenetic events drive such activation upon stimuli and here we study one such mechanism, chromatin conformation signatures implicated in long-range chromatin interactions that regulate transcriptional switch and gene expression. The EpiSwitch⢠technology was used to identify and analyse potential markers bordering such conformational signatures for these genes and juxtaposition of markers was compared between resting and activated macrophages. LPS, IL-4 and IFN-γ selectively altered chromatin conformations of their responsive genes in wild type, but not in MyD88â/â, IL-4Râ/â and IFN-γRâ/â macrophages. In addition, two distinct conformations were observed in CD200R1 after LPS and IFN-γ stimulation. In summary, signal-specific alterations in chromatin conformation provide biomarkers that identify and determine distinct gene expression programmes during macrophage activation.