Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
5833849 | International Immunopharmacology | 2011 | 9 Pages |
Abstract
Lipopolysaccharide (LPS), a structural component of Gram-negative bacteria, is implicated in the pathogenesis of endotoxemia/sepsis and multi-organ injury, including liver damage. We have shown that argininosuccinate synthase (ASS), a hepatic enzyme of the urea cycle, accumulates in circulation within 1 h after treatment with both LPS alone and hepatotoxic combination of LPS and d-Galactosamine. These findings indicate ASS as a sensitive biomarker of liver responses to bacterial endotoxin. Furthermore, we suggest that the ASS release represents a potential counteracting liver reaction to LPS, and demonstrates anti-LPS activity of recombinant ASS (rASS) in vitro and in rodent models of endotoxemia in vivo. rASS physically bound to LPS, as indicated by a gel shift assay, and suppressed Escherichia coli growth in cultures consistent with direct antimicrobial properties of ASS. rASS reduced LPS cytotoxicity, TNF-α production, and increased cell viability in cultured mouse macrophages, even when added one hour following LPS challenge. Intraperitoneal injection of rASS (5 mg/kg) after treatment with a high dose of LPS remarkably increased survival of rodents, with a concomitant decrease of sepsis markers TNF-α, C-reactive protein (CRP), and lactate dehydrogenase (LDH) levels in blood. These results suggest that the endogenous ASS constitutes a novel liver-derived component of the innate immune response to bacterial LPS, and that recombinant ASS could mitigate the lethal effects of bacterial endotoxins during sepsis.
Related Topics
Life Sciences
Immunology and Microbiology
Immunology
Authors
Victor Prima, Alvin Wang, Gabriel Molina, Kevin K.W. Wang, Stanislav I. Svetlov,