Article ID Journal Published Year Pages File Type
583574 Journal of Hazardous Materials 2008 6 Pages PDF
Abstract
Thermal gravimetric analysis (TG), differential thermal analysis (DTA), and in situ Fourier Transform Infra-Red spectrometer (FTIR) experiments were used to investigate the thermal decomposition mechanism of glycidyl azide polymer (GAP) crosslinked by using the curing agent isocyanate compound N-100 and the different ratios of plasticized-cured GAP/NG/BTTN, which are of potential interest for the development of high performance energetic propellants. The results of TG show the thermal decomposition temperature of GAP shifted to lower temperatures in the presence of NG/BTTN. The decomposition peak temperatures of cured GAP/NG/BTTN (1:1:1), cured GAP/NG/BTTN (1:0.5:0.5) and cured GAP/NG/BTTN (1:0.25:0.25) decrease by approximately 20 °C, 33 °C and 39 °C compared with cured GAP, respectively. This indicates that plasticizers NG/BTTN have good acceleration effects on the decomposition of cured GAP, especially for low content of NG/BTTN. At the same time, the results of DTA show that the decomposition heat of cured GAP/NG/BTTN is larger than that of cured GAP. In situ FTIR results show NG/BTTN not only accelerate the decomposition of -N3 groups and characteristic urethane links , but also accelerate the decomposition of C-O-C groups.
Related Topics
Physical Sciences and Engineering Chemical Engineering Chemical Health and Safety
Authors
, ,