Article ID Journal Published Year Pages File Type
58366 Catalysis Today 2006 14 Pages PDF
Abstract

In this overview we discuss how aqueous-phase catalytic processes can be used to convert biomass into hydrogen and alkanes ranging from C1 to C15. Hydrogen can be produced by aqueous-phase reforming (APR) of biomass-derived oxygenated hydrocarbons at low temperatures (423–538 K) in a single reactor over supported metal catalysts. Alkanes, ranging from C1 to C6 can be produced by aqueous-phase dehydration/hydrogenation (APD/H). This APD/H process involves a bi-functional pathway in which sorbitol (hydrogenated glucose) is repeatedly dehydrated by a solid acid (SiO2–Al2O3) or a mineral acid (HCl) catalyst and then hydrogenated on a metal catalyst (Pt or Pd). Liquid alkanes ranging from C7 to C15 can be produced from carbohydrates by combining the dehydration/hydrogenation process with an upstream aldol condensation step to form C–C bonds. In this case, the dehydration/hydrogenation step takes place over a bi-functional catalyst (4 wt.% Pt/SiO2–Al2O3) containing acid and metal sites in a specially designed four-phase reactor employing an aqueous inlet stream containing the large water-soluble organic reactant, a hexadecane alkane sweep stream, and a H2 inlet gas stream. The aqueous organic reactant become more hydrophobic during dehydration/hydrogenation, and the hexadecane sweep stream removes these species from the catalyst as valuable products before they go on further to form coke.

Related Topics
Physical Sciences and Engineering Chemical Engineering Catalysis
Authors
, ,